
N90- 29 17

WHAT KIND OF COMPUTATION IS INTELLIGENCE?

A FRAMEWORK FOR INTEGRATING DIFFERENT KINDS OF EXPERTISE

B. Chandrasekaran

Laboratory for AI Research

Department of Computer & Information Science
The Ohio State University

Columbus, OH 43210

Abstract

The view that the deliberative aspect of intelligent behavior is distinct type of algorithm,

in particular a goal-seeking exploratory process using qualitative representations of

knowledge and inference, is elaborated. There are other kinds of algorithms that also

embody expertise in domains. We discuss the different types of expertise and how they

can and should be integrated to give full account of expert behavior.

Extended Summary

1. Intelligence as Computation

The idea that intelligence as a process is algorithmic in character is at the foundation of

Artificial Intelligence (AI) as both a science and a technology. With the exception of a

new movement called connectionism, almost everyone in AI subscribes to this view,

especially as intelligence relates to cognitive activities such a problem solving. I have

elsewhere 1 discussed connectionism and AI, and noted that connectionist-style systems

may have some advantages to offer in modeling perceptual phenomena such as

speech or visual recognition, and some cognitive phenomena such as memory retrieval.

However, for complex problem solving activities that take place in the deliberative

mode, the view of the process of intelligence as largely algorithmic, i.e., manipulation of

discrete symbol structures, is the most common paradigm. This is mainly because of

the fact that "thought", at least as people are aware of it, has a large propositional and

hence symbolic content. Discrete symbol structures are generally used to represent the

underlying structure of propositions, and hence thoughts. In what follows, I will restrict

my remarks to AI and problem solving, in particular expert systems, and I am going to

take the algorithmic view for granted for the purposes of this distinction.

Now of course the modern engineer is very familiar with a number of powerful

algorithms for various problems. She has cut her teeth on computers, programming

395



and optimization theories, and has been exposed to linear programming algorithms,

finite element analysis, various kinds of numerical simulation programs, etc., etc., each

giving precise and useful answers to a number of decision-making problems. Thus a

natural question for such a person is whether intelligence is characterized by a special
kind of algorithm, different in its power and limitations from the more traditional

algorithms she is familiar with. Shehas probably heard that AI programs are "heuristic"

in nature. Additionally, the engineer will surely want to know the extent to which the

current AI technology is actually useful in creating intelligent programs. Or is it simply a
new programming technology? Even as a programming technology what does it offer in
terms of power?

In this talk I plan to offer a view of what characterizes intelligence as a problem solving

process, what AI, especially the set of ideas that have come to be called, variously,
knowledge-based systems or expert systems, is about and how to understand and

characterize the relationship of the algorithmic processes of intelligence to the more
traditional types of algorithms that engineers are familiar with.

2. Different points of view about AI

AI is not a unified field of scientific activity; there are significant differences within the

field about the nature of intelligence, how to approach its study, and about the goals of
AI as a science and technology.

1

.

For some people AI means understanding the principles behind
intelligence as we know it in humans and seeing how that can be
computationally supported and exploited for technology. For example,
theories that the appropriate architecture for modeling human intelligence
is a rule-architecture, that human concepts are stored as a linked network

of frames, that problem solving comes in a variety of generic strategies, or
that much human problem solving is based on storage, retrieval and
modification of large number of cases are theories which attempt to
explain some aspects of human intelligence. These theories have

become the basis of AI programming or AI-type approaches to solving
some problems.

There is what one might call a pragmatic view that AI means any
programming technique or algorithm that helps us solve complex
problems by any combination of techniques, but most commonly by use of
so-called "heuristic" search techniques. If the heuristic technique is
based on some theory in 1 above, then this view is really close to the view
of AI in 1. However, often there is no particular concem that the heuristics
reproduce human-like performance, but rather that they reduce the
complexity of computation in any way. In fact, human beings aren't
particularly good problem solvers in a number of problems such as the

396



=

traveling salesman problem for which heuristic algorithms have been
invented.

Yet others go along with the just mentioned view of AI simply complex

algorithms, but restrict the types of problems to be considered as those
that humans do particularly well, e.g., problems such as diagnosis,

planning, design, and theory formation, which are normally considered
tasks that humans excel in. However, the connection to humans is often

only at the level of choice of the problem. Once a problem such as

diagnosis is chosen, that problem is often treated as an abstract problem
for which "normative" algorithms based on some notion of rigor are to be

found. There is no particular commitment to use methods of or theories
about human-like intelligence. This approach results in a theory of the

task-- diagnosis, planning, induction, or whatever -- rather than a theory of

intelligence as a process. In this view, people often solve the problems
more or less approximately, but the normative algorithm is offered as the

ioeal algorithm for the problem. A good analogy here is multiplication of
two numbers. True some people are good at solving some versions of the

multiplication problem in their heads, but studying multiplication as an

abstract problem and discovering good algorithms for it has turned out to
be very effective. An attempt to do for diagnosis or planning what
arithmetic has done for multiplication is often the aim in this approach. If
this can be done effectively, and systems can be built based on such

algorithms, that would be very welcome from a technological perspective,
since one would have algorithms for problems of importance and which

until now only humans did well.

Typically, however, the algorithms obtained by an abstract study of the
task of this type tend to be computationally intractable in the general case

(unlike the multiplication example). Examples of this are several
approaches to diagnosis where the problem is elegantly formulated in
some formalism such as logic or statistics, but the algorithms proposed for
diagnosis based on the formalism are in general very complex, and

heuristic approximations need to be made in particular problems. But
these approximations need not, and in general do not, match the power or
behavior of human intelligence in these problems, since the original
formulation was not based on a theory of intelligence.

I will take the position that intelligence is not an arbitrary collection of complex

algorithms as in (2) above, nor is a theory of tasks per sea theory of intelligence as in

(3). Just because people perform multiplications in their head doesn't mean the theory

of multiplication is an AI theory. Just changing multiplication to diagnosis doesn't

change the logical character of the situation. That is, while it is certainly technologically

useful to obtain good algorithms for diagnosis, independent of a theory of intelligence,

we have to be careful about characterizing it as AI. Whenever we have a problem for

which we can generate a tractable algorithm about whose behavior we can have some

confidence, we should of course use it for our applications. However, where AI is

39"7



important is in problems where the normative or formal algorithms have one or both of
the following properties: they are intractable, i.e, they are of high computational
complexity, or they require information in a form that is not generally available in the
domain. In these cases, if there is evidence that human experts solve it, then we can
look for AI-type approaches instead of traditional algorithms. (If human experts solve
this problem, it is not because they can magically overcome the theoretical limitations of
computational complexity. The power of human intelligence in these problems arises
from domain-specific knowledge and powerful information processing strategies that
characterize intelligence. Together they enable the human to solve particular and
important subsets of the original problem.) Of course for a number of problems of

importance that humans solve, we neither have any kind of algorithms, nor do we have

any real idea of how humans solve them. After all, AI as a science is only in its infancy.

3. Intelligence as exploratory process

I would like to propose a view of intelligence as a particular kind of computational

process. I hope my description will help in seeing how these processes can be

integrated with other kinds of algorithms that also embody human expertise.

Consider an engineer working on a design problem. Let us say she has some paper

and pencil and maybe a computer terminal in front of her. Part of the design activity

takes place in her head, part of it is recorded in the paper, and part of the needed

information processing takes place in the computer by means of execution of some

algorithms either she wrote or she invoked. Typically she uses her thought or mental

problem solving processes to decompose the problem, think of possible design

approaches, previous successful designs which have some similarity to the current

problem, visualize the design, do some spatial reasoning or qualitative simulation of the

artifact under design, etc., etc. Partial designs are probably set down on the paper,

which thus provides an enlarged short term memory capacity. Note that the algorithm

executed by the computer is such that it would not be particularly appropriate or

possible or efficient for her to do it in her head. She might herself have designed the

algorithm, but there is a qualitative difference between the operation of that algorithm
and her processes of intelligence.

One way in which to clarify some of the issues is to make a distinction between

computations which are being intelligent versus those which use the result of earlier

intelligent behavior. One might look at an algorithm for the greatest common divisor,

and exclaim, "What a clever algorithm!". In reality, the creator of the algorithm was the

one who was being clever during its construction, but the algorithm itself, during its

running, is not engaging any of the processes that intelligence is composed of, such as

exploration of possibilities, hypothesis-making, etc., using general methods for such
behavior.

398



We can focus the discussion by considering what it means to be intelligent in problem

solving. Mycin, R1, finite element methods, linear programming algorithms,

multiplication algorithms, etc., are all computational methods which provide solutions to

some problems. Let us now consider a subclass of methods which are "intelligent" in

the following sense: they explore a problem space, implicitly defined by a problem

representation, using general search strategies which exploit typically qualitative

heuristic knowledge about the problem domain. A working hypothesis in AI is that

humans, unassisted by other computational techniques or paper and pencil, engage in

this kind of problem solving. The subarea of AI concerned with problem solving takes

as its subject matter the phenomena that surround this kind of knowledge-based and

general strategy-directed exploration of problem spaces. The power of these

phenomena come from the effective way in which they explore very large problem

spaces to make plausible and interesting hypotheses, which can then be verified by
other means if necessary. Also, if information that can only be obtained by other kinds

of computations are necessary during this kind of exploratory problem solving activity,
then these other methods can be invoked, much as an engineer flits between, on one

hand, "thinking" about a problem and making intermediate hypotheses, and, on the

other hand, writing down some equations to solve before further he or she engages in

further exploration.

For lack of a better term, let us call computational methods that are characterized by

such knowledge-based and strategy-directed exploration of qualitative problem spaces

problem space exploratory techniques. Other kinds of computational techniques, let us
call solution algorithms. These terms are unsatisfactory, but with proper qualifications

they will do.

Note that our distinction is some what different from the faidy classical "heuristic" vs

"algorithmic" distinction. For example, the algorithm for the Traveling Salesman

problem is complex, so a number of programs which approximate the solution by

making various assumptions and approximations have come to be called heuristic

solutions to the problem. But, these are still solution algorithms according to our

definition, albeit without the properties of provable correctness of the solutions given by

them, since these algorithms do not, at run time, engage in exploration of the underlying

problem space by use of explicit knowledge and general exploration strategies.

There are many problems for which solution algorithms which are not computationally

complex are known. Computer science in general and a number other disciplines take

as their subject matter the production of solution algorithms for a number of problems of

a general or domain-specific nature. Sorting, multiplication, well-defined optimization

problems for which linear programming is applicable are of these types. When

problems of this type are identified in any domain, there is no reason to engage in

problem-space exploratory techniques. Adopting AI-type solutions to these problems

399



will merely produce solutions which are qualitative and approximate, and, in comparison

with the corresponding solution algorithms, the Ai methods are likely to be

computationally expensive as well. If during diagnostic reasoning one needs to know

the exact value of pressure in the reactor chamber, if one has an equation that can be

evaluated for it, and if one has all the information needed to evaluate the equation, then

it is silly to use problem-space exploratory methods. On the other hand, for a number of

problems such as diagnosis and design in the general case, the underlying spaces can

be very large, and solution algorithms of limited complexity are not available, except

perhaps for some subcases. This is when consideration of AI methods is appropriate.

It is important to emphasize that expert knowledge consists of both kinds of

computations. Thus expert systems should use both kinds of techniques, deploying
each kind for subproblems where their power is needed. But, since these solution

algorithms are domain-specific, or use methods, such as linear programming, that are

not the subject matter of AI per se, it is most useful to confine the discussion in AI to

problem space exploratory techniques, especially those inspired by human intelligence.

For example, I have described elsewhere a study of human-like problem space
exploration for the task of design 2.

This view of intelligence as problem space exploration is close to Newell's problem

space hypothesis 3. However, in my view an additional characterization of intelligence

emerges from a consideration of the nature of exploratory control strategies. In our

research we have identified a number of general strategies that we call generic tasks to

set up and explore problem spaces. I have described them in a number of papers4, 5.

These strategies have the property that they bring an element of computational

tractability by using knowledge expressed and organized in specific forms.

4. Concluding Remarks

So far my goal has been to help engineers interested in AI for problem solving and the

construction of expert systems to understand what makes AI as a distinct type algorithm

by pointing out that a part of human problem solving expertise comes in the form the

abilities to explore and search in problem spaces. In this view, the relationship between

the thoughts of a problem solver is that they stand for descriptions of the states of a

problem space as the problem solver is exploring alternatives in pursuit of a goal.

However within AI there is another paradigm about the relationship between thoughts.

In this view thoughts are connected by their logical relations and thus "reasoning" is the

basic metaphor of artificial intelligence as it applies to deliberative behavior. Different

kinds of logics are proposed to capture this relationship and the term "inference" is
used to describe the process.

400



We have used the term "deliberative" several times to make sure that we have been

referring to "thinking" as the basic activity of intelligence. However, even within

symbolic or algorithmic AI, there have been researchers who emphasize the importance
of non-deliberative aspects of intelligence, in particular about phenomena of memory.

Minsky and Schank have been noted for theories about organization of knowledge and

events in memory structures. The phenomena of memory organization in this research

paradigm do not have much to do with reasoning in the sense of logic, nor with problem

solving in the sense of search through alternatives that are generated at run-time and

examined. Instead they emphasize memory organization and indexing for recognition

and retrieval. Sometimes a solution to a problem can be obtained by couching it as a

problem for which recognition or retrieval can produce a solution, such as in case-based

reasoning.

Thus given a problem to be solved, there are a number of ways in which it may be

solvable:

• A "closed form" algorithm may exist for that class of problems, e.g.,

algorithms for multiplication, sorting, or finite element analysis. If the
domain is such that numerical quantities are central to it, then this algorithm

will be quantitative in character.

• The solution to the problem may be obtained by generating alternatives in a

problem space. This is the problem solving view and knowledge, often in a
qualitative form, is used to select altematives that are likely to lie in the path
towards a solution.

• The solution may be obtained by logical reasoning from assumptions about
the domain, ie., the problem is thought of as a reasoning problem. Some
form of theorem proving may be used, and knowledge about the domain is
stated in the form of statements in some logical language, most commonly

in predicate calculus.

• The problem may be solved by retrieving solutions from memory or
transformations of solutions of analogical problems stored in memory. This
version of the solution may be implemented in some theories in symbolic

forms and in others in a connectionist framework.

Given these possibilities, expertise may come in a form appropriate for any one of the

above approaches.

In what follows, I will discuss applications of AI to building problem solving systems, and

see what implication the above analysis has to how expertise can be integrated. For

simplicity, I will restrict myself to only one type of AI process, namely deliberative goal-

seeking, problem space exploration. My comments on integration can be extended to

4ol



other types of AI processes as well.

5. Acknowledgments

I acknowledge the support of Defense Advanced Research Projects Agency, contract

RADC F30602-85-C-0010, and of Air Force Office of Scientific Research, grant
87-0090, in developing this view of intelligence as a computational process.

6. References

1. B. Chandrasekaran, "What kind of information processing is intelligence? A
perspective on AI paradigms and a proposal," to appear in Foundations of Artificial

Intelligence: A Source Book, D. Partridge and Y. Wilks, editors, Cambridge UniversityPress, 1988.

2. B. Chandrasekaran, "Design: An information processing-level analysis," to appear

as Chapter 2 of Design Problem Solving: Know/edge Structures and Control Strategies,
D. C. Brown and B. Chandrasekaran, forthcoming.

3. A. Newell, "Reasoning, problem solving and decision processes: The problem

space as a fundamental category," in R. Nickerson, ed., Attention & Performance VIII,
Erlbaum, Hillsdale, NJ, 1980.

4. B. Chandrasekaran, "Generic tasks in knowledge-based reasoning: high-level
building blocks for expert system design," IEEE Expert, Fall 1986, pp. 23- 30.

5. B. Chandrasekaran, "Towards a functional architecture for intelligence based on

generic information processing strategies," Proc. International Joint Conference on AI,
Milan, Italy, August 1987, pp. 1183-1192.

4o2


